SYNTHESIS AND BIOLOGICAL ACTIVITY OF A SERIES OF PIPERAZINE-2,3-DIONE CONTAINING PENICILLINS AND 6α-FORMAMIDOPENICILLINS

I. DERIVATIVES SUBSTITUTED AT C(5) OR C(6) OF THE PIPERAZINE RING

DAVID T. DAVIES, FRANK P. HARRINGTON*, SARAH J. KNOTT and Robert Southgate

Beecham Pharmaceuticals, Chemotherapeutic Research Centre, Brockham Park, Betchworth, Surrey, RH3 7AJ, U.K.

(Received for publication October 27, 1988)

The synthesis and antibacterial activity of a series of penicillins and 6α -formamidopenicillins containing a C(5) or C(6)-substituted piperazine-2,3-dione moiety in the C(6)- β sidechain is described.

The synthesis^{1,2)} and biological properties^{3,4)} of BRL 36650 (1), a C(6)- α -formamidopenicillin containing the 4-ethylpiperazine-2,3-dione group in the C(6)- β -sidechain, have been reported recently. BRL 36650 exhibits a potent level of activity against Gram-negative bacteria but, like temocillin (2)⁵⁾ and other C(6)- α -substituted penicillins^{6,7)}, only poor activity against Gram-positive organisms. Replacement of the piperazine-2,3-dione moiety with a variety of different acyl radicals⁷⁾ failed to produce any new C(6)- α -formamidopenicillins with significantly enhanced activity against the Gram-positive bacteria. Piperacillin analogues (5a and 5b), having a substituent at the C(6)-position of the piperazine-2,3-dione ring, have previously been described in the literature⁸⁾ and 5a was shown to possess increased antibacterial activity and β -lactamase stability in comparison with piperacillin (3) itself. We decided to investigate the effect of substitution at C(5) and C(6) of the piperazine-2,3-dione residue in the hope of expanding the antibacterial spectrum of BRL 36650 (1) to incorporate activity against Gram-positive bacteria. Substitution in this manner generates an asymmetric centre in the piperazine-2,3-dione ring and it was apparent from the literature⁸⁾ that the stereochemistry of this centre had a pronounced effect on the potency of the subsequently derived penicillins. We, therefore, decided to synthesise all possible isomers for each substituent.

Chemistry

Piperazine-2,3-diones ($4a \sim 4d$) were synthesised unambiguously from the appropriate *R* or *S*-amino or azido acids by known chemical methods^{4,8}. However, piperazine-2,3-diones 4e and 4f were obtained as epimeric mixtures by subjecting the appropriate aldehydes to a modified Strecker procedure to give the aminonitrile⁹, followed by reduction to the diamine¹⁰ and cyclisation with diethyl oxalate¹¹.

As shown in Scheme 1, the carbonyl chlorides $(8a \sim 8f)$ were prepared by the action of phosgene¹¹⁾, or, preferably, trichloromethyl chloroformate¹²⁾ on the silyl imino ethers derived from the piperazine-2,3-diones $(4a \sim 4f)$. Reaction of these carbonyl chlorides with ampicillin under standard Schotten-Baumann conditions¹¹⁾ gave piperacillin analogues $(5a \sim 5d)$. Anhydrous acylation of the stable

aminopenicillin $(9a)^{13}$ with carbonyl chlorides $(8a \sim 8f)$ gave the intermediate C(6)- α -methylthiopenicillins $(10a \sim 10f)$, which were converted to the C(6)- α -formamidopenicillins $(11a \sim 11f)$ by known methods¹⁾. Benzyl esters were then removed by catalytic hydrogenation to give the corresponding acids $(6a \sim 6d)$. The diastereoisomers of 11e and 11f were separated by silica gel chromatography and deprotected separately to give $6e^*$, $6e^+$, $6f^*$ and $6f^+$. The diacetoxypenicillins $(7a \sim 7d)$ were prepared by essentially the same process as the phenyl analogues. However, whereas 9a is a stable, crystalline solid¹³, the corresponding diacetoxy analogue (9b) is unstable to storage. The 4-nitrobenzyloxycarbonyl protected derivative (14a) was found to be stable and could be treated with zinc and hydrochloric acid to smoothly give the amine (9b). This was then acylated, without purification, to give esters ($12a \sim 12d$). These intermediates were progressed *via* the C(6)- α -formamidopenicillins ($13a \sim 13d$) to the corresponding acids ($7a \sim 7d$) as described above. As we had previously found that the diacetoxy compounds were equipotent with the corresponding free catecholic derivatives, the acetate protecting groups were not removed. Although the trichloroethoxy carbamate (14b) is known in the literature and has been used to prepare $9b^{14}$, we found 14a gave a more rapid and dependable preparation of the amine (9b).

Results and Discussion

The introduction of a C(6)-methyl or C(6)-phenyl substituent into the piperazine-2,3-dione ring of piperacillin (Table 1) gave compounds ($5a \sim 5d$). In both series the S-isomers (5a and 5c) were considerably more active than the R-isomers against Gram-negative bacteria. The C(6)-methyl analogue (5a) was marginally more active than the C(6)-phenyl compound (5c), but offered no advantage

pyridine; v) Hg(OAc)₂, NH₃; vi) CH₃COOCHO, pyridine; vii) H₂ - Pd/C; viii) 9b, pyridine.

Organism	3	5a	5b	5c	5d		7b	7c	7d	1
Escherichia coli DCO	1.0	1.0	4.0	2.0	64	0.25	2.0	0.5	16	≤0.03
E. coli DCO RTEM	64	128	>128	>128	>128	0.25	4.0	0.5	64	≤ 0.03
Klebsiella pneumoniae T767	8.0	4.0	32	4.0	128	0.25	4.0	0.5	>128	≤ 0.03
Enterobacter cloacae P99 ^b	64	64	>128	128	>128	1.0	16	4.0	>128	0.5
Serratia marcescens US 32	0.5	2.0	16	2.0	64	1.0	8.0	4.0	>128	0.5
S. marcescens HCN 3956 ^b	64	64	>128	128	>128	4.0	64	4.0	>128	1.0
Proteus mirabilis C977	0.5	1.0	16	2.0	32	2.0	32	16	>128	0.5
Pseudomonas aeruginosa 10662	4.0	4.0	16	8.0	64	2.0	16	4.0	64	0.12
Streptococcus pyogenes CN10	0.12	≤ 0.06	≤ 0.06	≤ 0.06	≤ 0.06	8.0	16	8.0	2.0	2.0
Staphylococcus aureus Oxford	1.0	0.5	0.5	0.5	0.5	>128	>128	128	>128	>128

Table 1. In vitro activity of analogues 5 and 7 (MIC^a, μ g/ml).

^a Serial dilution in Diagnostic Sensitest agar containing 5% defibrinated horse blood inoculated with 0.001 ml of an overnight broth culture diluted 1/100 (approx 10⁴ cfu/spot).

^b Constitutive class I β -lactamase producing strain.

		-			•••						
Organism	6g	6a	6b	6с	6d	6e*	6e+	6f*	6f+		
Escherichia coli DCO	4.0	2.0	32	4.0	>128	2.0	16	4.0	>128		
E. coli DCO RTEM	4.0	2.0	128	4.0	>128	4.0	16	8.0	>128		
Klebsiella pneumoniae T767	4.0	4.0	64	16	>128	4.0	32	8.0	>128		
Enterobacter cloacae P99 ^b	8.0	4.0	64	16	>128	8.0	16	16	>128		
Serratia marcescens US 32	2.0	1.0	32	4.0	>128	2.0	8.0	8.0	>128		
S. marcescens HCN 3956 ^b	16	4.0	>128	4.0	>128	4.0	32	16	>128		
Proteus mirabilis C977	2.0	2.0	32	16	>128	2.0	8.0	8.0	128		
Pseudomonas aeruginosa 10662	16	32	>128	32	>128	16	>128	64	>128		
Streptococcus pyogenes CN10	2.0	2.0	2.0	1.0	1.0	2.0	2.0	1.0	1.0		
Staphylococcus aureus Oxford	>128	128	>128	128	128	>64	64	64	64		

Table 2. In vitro activity of C(6)- α -formamidopiperacillin analogues 6 (MIC^a, μ g/ml).

^{a,b} See footnotes in Table 1.

over piperacillin itself against Gram-negative bacteria, although both penicillins were slightly more active against Gram-positive cocci.

Introduction of a C(6)- α -formamido group into piperacillin gave **6**g, which possessed considerably enhanced activity against β -lactamase producing Gram-negative bacteria such as *Escherichia coli* DCO (RTEM) and *Enterobacter cloacae* P99 as a result of improved β -lactamase stability. However, activity against Gram-positive strains was compromised. In this series (Table 2), the introduction of a C(6)-(S)-methyl substituent into the piperazine-2,3-dione moiety (**6a**) only led to a slight improvement in activity against Gram-negative bacteria relative to **6g**⁷. This effect was not seen with the corresponding phenyl analogue (**6c**) and neither substituent significantly enhanced the Gram-positive potency. Again, the corresponding *R*-diastereoisomers (**6b** and **6d**) showed reduced activity. In common with previous observations, compounds having methyl and phenyl substituents at the C(5) position of the piperazine-2,3-dione ring (**6e***, **6e**⁺, **6f*** and **6f**⁺) showed a considerable difference in activity between the two diastereoisomers. The more active penicillins (**6e*** and **6f***) were assumed, by analogy with the literature⁸⁾ and our own results presented herein, to be the *S*-isomers. Neither compound offered any significant advantage over the unsubstitued compound (**6g**)⁷⁰.

The remarkable effect of the introduction of the catechol residue (cf. BRL 36650) on Gram-negative potency, particularly against strains of *E. coli* and *Pseudomonas aeruginosa*, are now well known^{3,4)}. Substitution at C(6) of the piperazine-2,3-dione residue of BRL 36650 ($7a \sim 7d$), failed to give compounds with enhanced Gram-positive activity and also adversely affected the Gram-negative potency of the derivatives (Table 1).

Conclusion

The improvements in antibacterial activity as a result of the introduction of a C(6)- α -formamido group into the piperacillin nucleus, and of the subsequent incorporation of a catechol into the glycine residue, have been reported previously^{3,4)}. Our results show that substitution at C(5) or C(6) of the piperazine-2,3-dione substituent did not further enhance these levels of activity.

Experimental

IR spectra were recorded for dichloromethane solutions on a Perkin-Elmer 197 spectrophotometer or for KBr discs on Perkin-Elmer 457 or Perkin-Elmer 983 grating spectrophotometers. ¹H NMR spectra were obtained on Perkin-Elmer R32 (90 MHz) or Bruker WM 250 (250 MHz) instruments using TMS as internal standard. While two rotameric forms were observed in the ¹H NMR spectra of the C(6)- α -formamidopenicillins, only the major, Z rotamer is quoted. Fast atom bombardment mass spectra (FAB-MS) were recorded on a VG ZAB spectrometer and the matrix is quoted.

Organic solutions were routinely dried over anhydrous magnesium sulfate and solvents were removed by evaporation under reduced pressure below 30° C. Preparative chromatography of penicillin esters was performed on Silica gel 60 (<230 mesh ASTM) (Merck 7729) and of penicillanic acid sodium salts on Diaion HP-20SS resin and the eluant is stated.

Hydrogenation of benzyl ester protecting groups was carried out in redistilled, dry THF in the presence of 10% palladium on carbon at atmospheric temperature and pressure and the catalyst removed by filtration through Celite.

Compounds used for antibacterial testing were all essentially single substances, analysed by reverse phase HPLC on a Gilson HPLC system. A μ Bondapak C-18 column, eluted with methanol in 0.05 M ammonium acetate (pH 4.5) was used and compounds detected by UV absorption at 240 nm.

Penicillanic acids (5a and 5b) are known in the literature^{s)} and the C(5)-phenyl analogues (5c and 5d) were prepared by the same method.

<u>Benzyl</u> (5R,6S)-6-[(2R)-2-((6S)-2,3-Dioxo-4-ethyl-6-methylpiperazin-1-ylcarbonylamino)-2-phenyl-acetamido]-6-methylthiopenicillanate (10a)

Amine (9a) (458 mg, 1 mmol) in THF (10 ml) containing triethylamine (101 mg, 1 mmol) was treated with a solution of 8a, prepared from 4a (156 mg, 1 mmol)⁸⁾, in THF (10 ml) at room temperature. The reaction mixture was stirred at room temperature for 0.5 hour then diluted with EtOAc and water. The separated organic phase was washed successively with water and saturated brine, dried and evaporated. Chromatography, eluting with 70% EtOAc in cyclohexane, gave the title compound (286 mg, 43%): IR (KBr) cm⁻¹ 1780, 1747, 1714, 1699; ¹H NMR (250 MHz, (CD₃)₂CO) δ 1.02 (3H, s), 1.20 (3H, s), 1.18 (3H, t, J=7 Hz), 1.27 (3H, d, J=7 Hz), 2.32 (3H, s), 3.34~3.48 (2H, m), 3.53~3.64 (1H, m), 4.13 (1H, dd, J=5 and 13 Hz), 4.39 (1H, s), 4.74~4.79 (1H, m), 5.17 and 5.25 (2H, ABq, J=13 Hz), 5.43 (1H, s), 5.73 (1H, d, J=8 Hz), 7.28~7.58 (10H, m), 8.74 (1H, s, exchange), 10.01 (1H, d, J=8 Hz, exchange); FAB-MS (positive ion, carbowax - CHCl₃) m/z 668 (M+H, C₃₂H₃₇N₈O₇S₂).

Intermediates $(10b \sim 10f)$ were similarly prepared. 10e and 10f were obtained as diastereometric mixtures.

Benzyl (5R,6R)-6-[(2R)-2-((6S)-2,3-Dioxo-4-ethyl-6-methylpiperazin-1-ylcarbonylamino)-2-phenyl-acetamido]-6-formamidopenicillanate (11a)

The C(6)- α -methylthiopenicillin (10a) was converted to the title compound by known methods¹⁾ and 11a was obtained in 46% yield after chromatography, eluting with EtOAc: IR (KBr) cm⁻¹ 1785, 1742, 1690; ¹H NMR (250 MHz, (CD₃)₂CO) δ 0.92~1.29 (12H, m), 3.35~3.46 (2H, m), 3.53~3.64 (1H, m), 4.19 (1H, dd, J=6 and 13 Hz), 4.39 (1H, s), 4.75~4.77 (1H, m), 5.13~5.24 (2H, m), 5.57 (1H, s), 5.72 (1H, d, J=7 Hz), 7.28~7.60 (10H, m), 8.17 (1H, s), 8.25 (1H, br s, exchange), 8.80 (1H, br s, exchange), 10.06 (1H, d, J=7 Hz, exchange); FAB-MS (positive ion, 3-nitrobenzyl alcohol) m/z 665 (M+H, C₃₂H₃₈N₈O₈S).

Esters $(11b \sim 11f)$ were all prepared as described above. The diastereoisomers of 11e and 11f were separated by silica gel chromatography prior to deprotection.

 $\frac{\text{Sodium}(5R, 6R)-6-[(2R)-2-((6S)-2, 3-\text{Diox}o-4-\text{ethyl}-6-\text{methylpiperazin}-1-\text{ylcarbonylamino})-2-\text{phenyl-acetamido}]-6-\text{formamidopenicillanate}(6a)$

Ester (11a) (115 mg, 0.17 mmol) was hydrogenated in THF (20 ml) and the crude product dissolved in dilute, aqueous sodium hydrogen carbonate solution and purified by chromatography, eluting with mixtures of THF in water ($0 \sim 50\%$ gradient). Concentration and freeze-drying of the relevant fractions gave 6a (40 mg, 40%): IR (KBr) cm⁻¹ 1772, 1684, 1611; ¹H NMR (250 MHz, (CD₃)₂SO) δ 0.82~1.18 (12H, m), 3.23~3.36 (2H, m), 3.40~3.59 (1H, m), 3.71 (1H, s), 3.80~3.97 (1H, m), 4.52~4.56 (1H, m), 5.37 (1H, s), 5.68 (1H, d, J=7 Hz), 7.22~7.54 (1H, m), 7.99 (1H, s), 9.16 (1H, br s, exchange), 9.80~10.00 (2H, m, exchange); FAB-MS (positive ion, thioglycerol) m/z 597 (M+H, C₂₅H₂₉N₆O₈SNa).

All penicillin sodium salts $(6b \sim 6f)$ were prepared as described above.

 $\underline{\text{Benzyl} (5R,6S)-6-[(2R)-2-(3,4-\text{Diacetoxyphenyl})-2-((6S)-2,3-\text{dioxo}-4-\text{ethyl}-6-\text{methylpiperazin}-1-y|carbonylamino)acetamido]-6-methylthiopenicillanate (12a)}$

The protected penicillin (14a) (780 mg, 1 mmol) was dissolved in THF (20 ml). Water (5 ml) then acid-washed zinc powder (1.56 g) were added and the pH of the mixture adjusted to 3.0 with 5 M HCl. The pH of the mixture was maintained between 3.0 and 5.0 by addition of more acid as required. When TLC showed little or no starting material remaining, the mixture was diluted with EtOAc and water and filtered through Celite. The phases were separated, the organic phase washed with saturated brine, dried and evaporated. The residue was dissolved in THF (10 ml) and treated sequentially with pyridine (79 mg, 1 mmol) then a solution of 8a, prepared from 4a (156 mg, 1 mmol)⁸⁾, in THF (10 ml). After 0.5 hour at room temperature, the reaction mixture was diluted with EtOAc and water and the phases separated. The organic phase washed with water, saturated brine, dried and evaporated. Chromatography, eluting with 70% EtOAc in cyclohexane, gave 12a (284 mg, 36%): IR (CHCl₃) cm⁻¹ 1775, 1715, 1693; ¹H NMR (250 MHz, (CD₃)₂CO) δ 1.08 (3H, s), 1.18 (3H,

t, J=6 Hz), 1.25 (3H, s), 1.26 (3H, d, J=7 Hz), 2.24 (3H, s), 2.26 (3H, s), 2.31 (3H, s), 3.30~3.50 (2H, m), 3.53~3.68 (1H, m), 4.12 (1H, dd, J=5 and 13 Hz), 4.40 (1H, s), 4.71~4.82 (1H, m), 5.21 (2H, s), 5.42 (1H, s), 5.85 (1H, d, J=8 Hz), 7.20~7.55 (8H, m), 8.89 (1H, br s, exchange), 10.07 (1H, d, J=8 Hz, exchange); FAB-MS (positive ion, thioglycerol) m/z 784 (M+H, $C_{38}H_{41}N_5O_{11}S_2$).

Compounds $(12b \sim 12d)$ were similarly prepared and progressed through the formamido esters $(13a \sim 13d)$ to the acids $(7a \sim 7d)$ as described above.

Acknowledgement

The authors wish to thank the staff of the Physical Analytical Services Unit for spectroscopic analytical data.

References

- MILNFR, P. H.; A. W. GUEST, F. P. HARRINGTON, R. J. PONSFORD, T. C. SMALE & A. V. STACHULSKI: 6α(7α)-Formamidopenicillins and cephalosporins. J. Chem. Soc. Chem. Commun. 1984: 1335~1336, 1984
- 2) PONSFORD, R. J.; M. J. BASKER, G. BURTON, A. W. GUEST, F. P. HARRINGTON, P. H. MILNER, M. J. PEARSON, T. C. SMALE & A. V. STACHULSKI: Recent Advances in The Chemistry and Biology of β-Lactams. Eds., A. G. BROWN & S. M. ROBERTS, The Chemical Society, London, 1985
- BASKER, M. J.; R. A. EDMONDSON, S. J. KNOTT, R. J. PONSFORD, B. SLOCOMBE & S. J. WHITE: In vitro antibacterial properties of BRL 36650, a novel 6α-substituted penicillin. Antimicrob. Agents Chemother. 26: 734~740, 1984
- MANDELL, W. & H. C. NEU: Antimicrobial activity and β-lactamase stability of foramidocillin. Antimicrob. Agents Chemother. 29: 769~773, 1986
- 5) SLOCOMBE, B.; M. J. BASKER, P. H. BENTLEY, J. P. CLAYTON, M. COLE, K. R. COMBER, R. A. DIXON, R. A. EDMONDSON, D. JACKSON, D. J. MERRIKIN & R. SUTHERLAND: BRL 17421, a novel β-lactam antibiotic, highly resistant to β-lactamases, giving high and prolonged serum levels in humans. Antimicrob. Agents Chemother. 20: 38~46, 1981
- 6) BURTON, G.; M. J. BASKER, P. H. BENTLEY, D. J. BEST, R. A. DIXON, F. P. HARRINGTON, R. F. KENYON, A. G. LASHFORD & A. W. TAYLOR: Preparation and structure-activity relationships of some 6α-substituted penicillins. J. Antibiotics 38: 721~739, 1985
- GUEST, A. W.; F. P. HARRINGTON, P. H. MILNER, R. J. PONSFORD, T. C. SMALE, A. V. STACHULSKI, M. J. BASKER & B. SLOCOMBE: Structure-activity relationships of some 6α-formamido penicillins. J. Antibiotics 39: 1498~1501, 1986
- 8) ΤΑΚΑΝΟ, S.; H. OCHIAI, J. NITTA, M. KOMATSU, H. TAKI, M. TAI, T. YASUDA & I. SAIKAWA: Studies on β-lactam antibiotics for medicinal purpose. VII. Synthesis of 6-[p-α-(5 and 6-alkyl-4-ethyl-2,3-dioxo-1piperazinecarboxamido)phenylacetamido]penicillanic acid and structure-antibacterial activity. Yakugaku Zasshi (Japan) 99: 371~379, 1979
- 9) ALLEN, C. F. H. & J. A. VAN ALLAN: Diethylaminoacetonitrile in Organic Syntheses. Ed., E. C. HORNING, Coll. Vol. 3, p. 275, 1955
- TENNANT, G.: Immines, nitroles, nitriles and isocyanides. In Comprehensive Organic Chemistry. Vol.
 2. Eds., D. BARTON & W. D. OLLIS, p. 550, Pergammon Press Ltd., Oxford, 1979
- SAIKAWA, I.; S. TAKANO, C. YOSHIDA, O. TAKASHIMA, K. MOMONOI, S. KURODA, M. KOMATSU, T. YASUDA & Y. KODAMA (Toyama): Novel penicillins and cephalosporins and process for producing the same. Brit. 1 508 062, Apr. 19, 1978
- 12) OHI, N.; B. AOKI, K. MORO, T. KUROKI, N. SUGIMURA, T. NOTO, T. NEHASHI, M. MATSUMOTO, H. OKA-ZAKI & I. MATSUNAGA: Semisynthetic β-lactam antibiotics. II. Effect on antibacterial activity of ureido N-substituents in the 6-[(R)-2-[3-(3,4-dihydroxybenzoyl)-1-ureido]-2-phenylacetamido]penicillanic acids. J. Antibiotics 39: 242~250, 1986
- BURTON, G. & F. P. HARRINGTON: Spirocyclic penicillins. J. Chem. Soc. Perkin Trans. I 1987: 635~ 638, 1987
- 14) MILNER, P. H.; T. C. SMALE & A. V. STACHULSKI (Beecham): Chemical Process. Eur. Pat. Appl. 167011, Jan. 8, 1986